Chapter - 2 Transformations and Expectations

2.1 Distributions of functions of a Random Variable

$$ Cov(X,Y) = E[(X-E[X])(Y-E[Y])] $$

$$ -\sqrt{Var(X)\cdot Var(Y)}\leq Cov(X,Y) \leq \sqrt{Var(X)\cdot Var(Y)} $$

$$ \lim_ {n \to \infty} \left(1+\frac{a_n}{n}\right)^n = e^a $$

2.3 Moments and Moment Generating Functions

$$ M_X(t) = E\left[e^{tx}\right] = \int_{- \infty}^{\infty}e^{tx}f_X(x)dx $$

$$ m_n=E[X^n] = M_X^{(n)}(0) = \left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0} $$

$$ \sum_{k=1}^{\infty} \frac{m_ks^k}{k!} < \infty \,\, for\,\,some\,\,s>0 $$

$$ M_{aX+b}(t) = e^{bt}M_X(at) \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, (2.3.15) $$